Endpoint Overview
| Endpoint | Description | Credits |
|---|---|---|
POST /ml/analyze | Analyze text with ML models | 0.5-1 per text per analysis |
Analyze Text
Run sentiment, topic, intent, and keyword analysis on any text content.Basic Request
All Analysis Types
Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
texts | array | Yes | - | List of texts to analyze (1-100) |
enrich | array | Yes | - | Analysis types to run |
categories | object | No | - | Custom topic categories |
llm_provider | string | No | gemini-2.0-flash | LLM provider for analysis |
Available Enrichments
| Type | Description | Cost |
|---|---|---|
sentiment | Positive, negative, or neutral | 0.5 credits/text |
topics | Extract main topics | 1 credit/text |
intent | Identify user intent | 1 credit/text |
keywords | Extract key phrases | 0.5 credits/text |
Response
Custom Categories
Define your own topic categories for more relevant classification:Use Cases
Customer Feedback
Analyze support tickets, reviews, and survey responses
Content Moderation
Detect sentiment and intent in user-generated content
Market Research
Extract topics and sentiment from competitor mentions
Social Listening
Process imported data from any source
Python Examples
Batch Analysis
Sentiment Distribution
Credit Calculation
Credits are calculated per text, per analysis type:| Texts | Analyses | Calculation | Total |
|---|---|---|---|
| 10 | sentiment | 10 × 0.5 | 5 credits |
| 10 | sentiment, topics | 10 × (0.5 + 1) | 15 credits |
| 10 | all 4 types | 10 × (0.5 + 1 + 1 + 0.5) | 30 credits |